Two-Dimensional Curves

A curve in two-dimensional space (i.e., in the x,y coordinate system) may be represented
algebraically by an equation involving the variables x and y. If we can solve the equation for
yin terms of x, in such a way that any one value of x generates one value of y, then the
curve is the graph of a function—i.e., y is a function of x, y = f{x). Graphically, this means
the curve passes the Vertical Line Test: Any vertical line will intersect the graph at no
more than one point.

For instance, given the equation 2x — 3y = 6, if we solve for y, we get y = %x —2,s0yisa
function of x, i.e., y = flx) = %x —2. The graph is a line with slope % and y intercept (0,-2).
(A line may be thought of as a special case of a curve, namely, a curve that is straight.)
This is an example of a linear function. (Any oblique—i.e., slanted—line represents a linear
function. A horizontal line represents a constant function. A vertical line does not
represent a function at all.)

Given the equation 4x? + 2y = 10, if we solve for y, we get y = —2x? + 5, so y is a function of
x, i.e.,y = flx) = -2x?> + 5. The graph is a downward opening parabola with y intercept
(0,5). This is an example of a quadratic function.

Given an equation in x and y, it may be impossible to solve for y in terms of x, for example,
(x +y)s&™») = 1. Or it may be possible to solve for y in terms of x, but the resulting
formula may generate more than one value of y from one value of x. For instance, given
the equation x? + y? = 9, solving for y gives us y = +/9 —x?, so one value of x generates
two values of y (for instance, when x = 0 we get y = 3 and y = -3). In such cases, y is not a
function of x. Graphically, this means the curve fails the Vertical Line Test: A vertical line
may intersect the graph at more than one point. In the case of x> +y? = 9, the graph is a
circle centered at the origin with radius 3. The vertical line x = 0 intersects this circle at the
points (0,3) and (0,-3), which are the y intercepts of the graph.

Whenever a curve is represented by an equation involving only x and y, the curve has no
orientation—i.e., there is no forward direction or backward direction for the curve.
(Orientation will be discussed in detail shortly.)

In Calculus Il, we learned that a curve in two-dimensional space may be represented
algebraically by a pair of parametric equations, which express x and y each in terms of a
third variable, known as a parameter. We often use ¢ (representing time) or 6 (representing
angle measure). Assuming the parameter is ¢, we generically refer to these equations as

x =x(¢), y = y(t). The process of writing parametric equations to represent a curve is
known as parameterizing the curve. There is typically more than one way to do this.

When a curve is parameterized with respect to time, ¢, we think of it as the path of a moving
particle. The parametric equations give a unique position for the particle at each point in
time. This is known as a motion paradigm.



Assuming 0 is in the domain of the parametric equations, the point corresponding to # = 0 or
0 = 0 is of special interest; it is referred to as the initial point or starting point, denoted
P,. Different parametrizations of a curve may yield different starting points. For instance, if
x? +y? = 9 is parameterized as x = 3cos6, y = 3sin6, the starting point is (3,0), but if we
use the parameterization x = -3 cosf, y = 3sin#6, the starting point is (-3,0).

Parameterizing the curve also introduces an orientation for the curve—i.e., a forward
direction and a backward direction. The forward direction is the direction that we move
along the curve as the value of the parameter increases, whereas the backward direction
is the direction that we move along the curve as the value of the parameter decreases.
Different parametrizations of a curve may yield different orientations. For instance, if

x? +y? = 9 is parameterized as x = 3cosf, y = 3sin0, the orientation is counter-clockwise
(i.e., the forward direction is counter-clockwise), but if we use the parameterization

x = -3cosf, y = 3sinf, the orientation is clockwise.

If x> +y? = 9 is parameterized as x = 3cosf, y = —3sin6, the orientation is clockwise and the
starting point is (3,0).

A circle is an example of a simple closed curve. For such curves, it makes sense to
describe orientation or direction as either “clockwise” or “counter-clockwise.” For other
curves, such as parabolas, these terms are inapplicable. How can we describe direction for
such curves? In some cases, we may be able to describe direction as “leftward” or
“‘rightward,” but this wouldn’t work in all cases (for example, it would work for an upright
parabola, but not for a sideways parabola). Another option would be to describe direction
as “upward” or “downward,” but this again won’t work in all cases (for example, it would work
for a sideways parabola, but not for an upright parabola).

If we use the parameter ¢t and if 1 is in the domain of the parametric equations, the point
corresponding to ¢ = 1 is of special interest; it is referred to as the unitary point and is
denoted P,. (As with Py, the point depends on the chosen parameterization.) We can say
the forward direction of the curve is the direction from P, to P,.

The parabola y = —2x? + 5 could be parameterized so that x = ¢, y = -2 + 5, in which case
Py = (0,5) and P, = (1,3). Or it could be parameterized so that x = ¢+ 4,

y = =2(t+4)?+5, in which case Py = (4,-27) and P, = (5,-45). Or it could be
parameterized so that x = —¢, y = -2¢2 + 5, in which case P, = (0,5) and P, = (-1,3). The
first two parameterizations give us a rightward orientation, whereas the third gives us a
leftward orientation.

We have already discussed how to parameterize a line: Choose two different points, (xo,10)
and (xi,y1). Leta =x; —xo, andletb = y; —yo. Then the line has parametric equations

X =Xxo+at, y =yo+ bt, where t € (—o,). The initial point is Py = (x0,y0), and the unitary
pointis Py = (x1,y1). The forward direction is the direction we follow when moving from P,
to P,. Values of ¢t between 0 and 1 give us points on the line between P, and P;.

e If P, lies to the right of Py, ¢ < 0 gives us points on the line to the left of Py, and ¢ > 1
gives us points on the line to the right of P;.



o If P, lies to the left of Py, ¢ < 0 gives us points on the line to the right of Py, and ¢ > 1
gives us points on the line to the left of P;.

e If P, lies above Py, t < 0 gives us points on the line below Py, and ¢ > 1 gives us
points on the line above P;.

e If P, lies below Py, ¢t < 0 gives us points on the line above Py, and ¢t > 1 gives us
points on the line below P;.

For instance, to parameterize the line 2x — 3y = 6, we may choose P, = (0,2) and

P, =(3,0), soa =3and b =-2. The parametric equations arethen x = 0+ 3¢, y =2 - 2¢.
The orientation of this line is rightward and downward (or “southeast”). Since P, is to the
right of and below Py, ¢ < 0 gives us points on the line to the left of and above P,, while

t > 1 gives us points on the line to the right of and below P;.

Suppose a curve has parametric equations x = x(¢), y = y(¢). For any value of ¢, we obtain
a point on the curve, P, = (x(¢),y(¢)). The position vector for this point is r(¢) = < x(¢),y(¢) >
= x(1)i + y(¢)j. Notice that this is a vector-valued function of one real variable (or
parameter), ¢. It is known as a position function for the curve. (Bear in mind, this function
depends upon the chosen parameterization for the curve. A given curve can have many
possible parameterizations and hence many possible position functions.) Of course, we
can use any variable in place of .

For the line 2x — 3y = 6, we may use position function r(¢) = < 3¢,2 — 2t >. For the parabola
4x? + 2y = 10, we may use position function r(r) = < t,-2t> + 5 >. For the circle x> +y?> = 9,
we may use position function r(6) = < 3cos0,3sinf >.

Limits And Continuity:

In Calculus I, we learned the basic concept of the limit. If we have a function y = f(x), we
can ask, does y approach any particular value as x approaches some specified value, such
as a. If it does, we say the function has a limiting value (or just a limit, for short) as x
approaches a. Suppose we have such a value. Call it L. We can say, “y approaches L as
x approaches a,” which can be written more compactly as follows: y - L as x - a. We can
also write lim,., y = L, or lim,., f{x) = L, which would be pronounced, “The limit to the
function f{x) as x approaches a is L.” For example, lim,.o + sinx = 1.

In Calculus |, we were dealing with functions that produced numerical values (i.e., for any
given numerical value of x, the function y = f(x) produces a numerical value of y). But now,
in Calculus Ill, we are dealing with functions that produce vector values. In other words, the
vector equation of a curve, r(¢) = < x(¢),y(¢) >, may be thought of as a function whose input
is the scalar (or real number) ¢z, and whose output is the vector r(¢). For instance, given the
numerical value ¢ = 2, the function r(¢) = < £3, } > produces the vector < 8, % >. Can we

apply the concept of the limit to such functions? We can! Here is how...

Given the vector-valued function r(¢) = < x(¢),y(¢) >, we can ask, does r(¢) approach any
particular vector value as t approaches some specified numerical value, such as a. Ifit
does, we say the function has a limiting (vector) value (or just a limit, for short) as ¢



approaches a. Suppose we have such a vector value. Callit L. We can say,

“r(¢) approaches L as ¢ approaches a,” which can be written more compactly as follows:
r(¢) > Last - a. We can also write lim.., r(z) = L, which would be pronounced, “The
limit to the function r(¢) as ¢ approaches a is L.”

That’s the basic idea. Now how do we go about finding this sort of limit? We use the
following principle...

o Ifr(r) =< x(#),y(¢) >, then lim, r(t) = < limy,x(¢),lim ., y(¢) >
e Equivalently, if r(z) = x(¢)i + y(¢)j, then
limg, r(?) = limgy, x(6)i + lime, y(2)j
Essentially, this says the limit distributes in the same way as scalar multiplication—recall that
cr(t) =< cx(1),cy(t) >.

Each of the limits on the right side of the equation can be evaluated using the methods of
Calculus I.

Suppose r(f) = Lsint i+ ;—g; j. Find limeo r(2).

246t
22t

Solution: lim.¢ r(z) = lim. % sint i+ lim;.g j=1-3j

As we learned in Calculus I, some limits do not exist. For instance, lim,. sin - does not
exist, due to infinite oscillation. A limit “not existing” includes the possibility that the function
could approach infinity. For instance, lim,. x% does not exist, because the function
approaches infinity as x approaches 0. We may write lim,.o x% = oo, but it is still the case

that the limit does not exist! (Saying the limit “exists” means the function approaches a
unique real number value, and « is not a real number.)

Likewise, in this new situation, a limit may or may not exist. In order for lim.., r(¢) to exist,
both limits on the right side of the equation must exist. In other words, lim.., r(z) exists if
and only if both of the following limits exist:

e lim., x(¢)

o lim,,y(?)

If either of these does not exist, then lim,., r(z) does not exist.

For instance, suppose r(r) = < 5t+2,-1- >. lim,.; r(r) does not exist, because lim,.; -+
does not exist.

In Calculus |, we learned the concept of continuity. If we have a function y = f{x), and if
we have a specified value of x, such as a, we can ask whether or not the function is
continuous at a. In order for the function to be continuous at «a, all three of the following
conditions must be met:

1.  fla) must be defined. In other words, a must be in the domain of /.

2. lim,,, f{x) must exist.

3. lim,., f{x) must be equal to f{a), i.e., lim,., f{x) = fla).

If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a. In this case, we may say the function has a discontinuity at a.



Books or teachers may sometimes cite only the third condition listed above. Their thinking
is that saying lim,., f{x) = f{la) presupposes both condition #1 and condition #2. However, |
believe it is best to think of it as three separate conditions, and to check them in the order |
have specified. First check condition #1; if it fails, go no further. If condition #1 is met, then
check condition #2; if it fails, go no further. If condition #2 is met, then check condition #3.

If we know in advance (based on some previously established theorem) that the function fis
continuous at a value a, then we can evaluate lim,., f{x) by simple “plug and chug,” i.e., by
simply evaluating f{a). For instance, we have a theorem that says a polynomial function is
continuous for all real values of x. Hence, to evaluate lim,.s (3x> — 7x + 4), we just plug in 5
for x, giving us 44. But be careful. Plug and chug does not work when the function is not
continuous! For instance, you cannot evaluate lim,.o < sinz by plug and chug.

The concept of continuity can be applied to vector-valued functions. The function

r(¢) =< x(1),y(¢t) > is continuous at ¢t = a if and only if all three of the following conditions

are met:

1. r(a) must be defined, which means x(a) and y(a) must both be defined. In other
words, a must be in the domain of each function.

2. lim., r(¢) must exist, which means lim,., x(¢#) and lim., y(¢) must both exist.

3. lim., r(¢) must equal r(a), which means lim.., x(¢) = x(a) and lim., y(¢) = y(a).

If any of these three conditions is not met, then the function is not continous (or is

discontinuous) at a. In this case, we may say the function has a discontinuity at a.

Derivatives:

If a curve has a nonvertical tangent line at a certain point, the slope of the tangent line is
obtained by differentiation. When y is a function of x, we use ordinary differentiation,
which gives us the derivative of y with respect to x, f1(x) or %, in terms of x. Specifically,

f(x) = limy w The quantity w is known as the difference quotient. It
represents the slope of the secant line passing through a fixed point (x,f{(x)) and a variable
point (x + 4, f{x + h)). As h approaches zero, the latter point approaches the former point
and the secant line approaches the tangent line. (Of course, in practice, we find the

derivative by using the rules of differentiation studied in Calculus 1.)

In the case of a constant function or a linear function, the graph of the function is already a
line, so the tangent line coincides with this line itself; hence, the derivative at any point is
simply the slope of the original line (which means the derivative is a fixed value—i.e., it does
not vary as x varies). For other functions, the derivative is not fixed, but rather varies as x
varies. For instance, in the case of y = f(x) = —2x? + 5, the derivative is —4x (so the slope of
the tangent line is 12 when x is -3, whereas the slope of the tangent line is —20 when x is 5).
In such cases, the derivative is a function of one variable, x.

When y is not a function of x, we may find the derivative by using implicit differentiation:
We differentiate both sides of the equation with respect to x, and then solve the resulting



equation for f—,; in terms of both x and y. For instance, in the case of x> + y? = 9, we get

& — _x  In such cases, the derivative is a function of two variables, x and y In the case

dx y
of x? +y = 9, consider two points that vertically align with each other, ( 2 T )and
(T,T). At the former, we get % = —1, and at the latter, we get Zi = 1. Thus, the

equation of the tangent line at the former point is y = —x + 2, whereas the equation of the
tangent line at the latter pointis y = x — /2.

When the curve has been parameterized, if the curve has a nonvertical tangent line at a
certain point, the slope of the tangent line may be obtained by parametric differentiation,
which gives us the slope in terms of the parameter. Suppose our parameter is ¢.
Generically, our parametric equations are x = x(¢), y = y(t). Rather than expressing % as
a function of x (as we would do in the case of ordinary differentiation), or as a function of
both x and y (as we would do in the case of implicit differentiation), we instead express it as
a function of 7. First, we find the derivatives % = x/(t) and % = y/(t). We then divide the

latter by the former, and the result is the slope of the tangent line, i.e., % = % + % = ijgg .

Obviously, all these equations are valid if we replace ¢ with a different parameter, such as 6.

Suppose the circle x? + y?> = 9 is parameterized as x = 3cos6, y = 3sinf. Then % = —3sinf

and 2 = 3c050 When 0 = =, we get the point (3£-, 2), and we get 4 = -3 and
% = i so <~ = — /3. (This is the same result we would have obtained via implicit

differentlatlon )

A vector-valued function of one parameter can be differentiated as follows. Assuming the

parameter is ¢, we define the derivative with respect to ¢ to be limj. ;1, (r(t + h) -r(1)),
which equals limj-o *2=2j 1 Jim,,., MJ, or x/(1)i +y/(1)j, or <+ =Xj. In
component form, this is < x/(¢),y/(¢) > or < >. The derivative is denoted r/(t) or %r(z)

dr
or =- dr "

L
dz’ dt

When r(¢) represents a position function and the parameter ¢ represents time, then r/(¢) is
interpreted as the velocity function, in which case we may write v(¢) in place of r/(¢).

Notice that r/(¢) or v(¢) is a vector. For the moment, assume this vector is nonzero. Then it
has a magnitude or length, which is a positive real number, and it has a direction. The

magnitude of velocity is the speed of motion, v(r) = [x/(1)2 + y/(£)? = J (& ) ( )

The direction of velocity represents the instantaneous direction of motion. This direction will
be along the curve’s tangent line at the given point. (To write the equation of the tangent
line, we use the velocity vector as the line’s direction vector.)

For example, for the parabola x = ¢, y = -2¢* + 5, we have position function r(¢) =

< t,-2t* + 5 >, velocity function v(¢) = < 1,-4¢ >, and speed function v(¢) = J1 + 16¢2. When
t = 3, we have the point (3,-13), the position vector < 3,—13 >, the velocity vector

< 1,-12 >, and speed /145 ~ 12.04. At the point (3,—13), the tangent line has parametric
equationsx =3 +1¢ y = -13 - 12¢.



Suppose that at a certain value of ¢, x/(f) = 0 and y/(¢) # 0, so v(¢) is a nonzero scalar
multiple of j. In this case, the curve has a vertical tangent line at the point in question.
On the other hand, suppose y/(t) = 0 and x/(¢) + 0, so v(¢) is a nhonzero scalar multiple of i.
In this case, the curve has a horizontal tangent line at the point in question. If x/(¢) and
yI(¢t) are both nonzero, the curve has an oblique (or slanted) tangent line at the point in
question. If x/(¢) = 0 and y/(¢) = 0 (in other words, if the velocity vector is the zero vector),
then the curve has a cusp or kink or sharp turn at the point in question. (In this case, it
may or may not have a tangent line at the point in question, depending on whether the
left-hand tangent coincides with the right-hand tangent.)

For the circle x = 3cosf, y = 3sinf, we have r/(0) = < =3sinf,3cosfd >. r/(0) =< 0,3 > = 3j
and r/(r) =< 0,-3 > = -3j, so the circle has vertical tangent lines when 6 = 0 and 0 = r,
i.e., at the points (3,0) and (-3,0). r/(4) =< -3,0 >= -3iand r/(37”) =< 3,0 > = 3i, so the
circle has horizontal tangent lines when 6 = 2- and 0 = 37”, i.e., at the points (0,3) and
(0,-3). r/(0) is never zero because the sine and cosine functions are never simultaneously
zero; hence the circle has no kinks.

The function y = x*3 can be parameterized as x = £, y = #?>, which gives us v(¢) =
< 3¢%,2t >. Since v(0) = 0, the curve has a kink when ¢ = 0, i.e., at the point (0,0). In this
case, we have a vertical tangent line at the origin. (Note: In Calculus I, if we differentiated

i — 23 4 _ 2 13 _ _2 i~ i i ;
the equation y = x“°, we would get — = $x7"° = T which is undefined when x is zero.)

Since r/(¢) is itself a vector-valued function of ¢, it may likewise be differentiated with respect
to«. The result is the second derivative of r(¢) with respect to ¢, r//(¢) or %. It is equal to
Px dYy

2
dtija or < x/I(1),y!(t) >, or < <X, = >

11O + v(5)i e S
xI(Oi+ y(1)j, or it a2

When r(¢) represents a position function and ¢ represents time, r//(¢) is interpreted as the
acceleration function, in which case we may write a(¢) in place of r//(¢). Its magnitude is

a(t) =[x +y1(0)° =/(%%)2+(§%)5

See the Differentiation Rules on page 858 of the text.

4C=0

One rule the text neglects to mention is this: For any constant vector C,



Integrals:

Given two vector-valued functions u(¢) and w(z), if u/(#) = w(z) for all zin an open interval,
then w(z) is the derivative of u(z), and u(¢) is an antiderivative of w(z). Pay close attention
to the wording just used. We say “the” derivative because u(¢) has a unique derivative, but
we say “an” antiderivative because w(¢) will have infinitely many antiderivatives. For any
constant vector C, the function u(¢) + C is an antiderivative of w(¢), because

L) +C) = Lu@®)+-<LC=u/(t)+0=u/(r) = w(?). The collection of all antiderivatives of
w(z) is called the indefinite integral of w(z) and is denoted jw(t) dt. We may write

jw(t) dt = u(t) + C, where C is an arbitrary constant vector. The indefinite integral of w(7)

can also be referred to as the general antiderivative of w(¢).
The arbitrary constant vector can be expressed as < C;,C; >.

For example, consider u(r) = < #2,sint > and w(¢) = < 2t,cost >. Since u/(¢) = w(z) for all
t € (—0,), w(?) is the derivative of u(z), and u(¢) is an antiderivative of w(z).
j < 2t,cost>dt =< 2,sint >+ C =< t>,sint > +< C1,C, >=< * + Cy,sint + C, >.

A generic antiderivative of w(¢) can be denoted W ().

A particular antiderivative can be dictated by an initial condition. For instance, suppose
we seek the antiderivative of w(z) = < 2¢,cost > whose value when ¢t = Z-is < 5,7 >. In

other words, find W(z) so that W(Z-) =< 5,7 >. We already know that the general
antiderivative of w(¢) is < > + Cy,sint + C, >. Hence, the challenge is to find the necessary
values of the constants C, and C,. (£)*+Cy =5,80Cy =5- & = 222 and

sinZ- + C, =7, so C; = 6. Hence, we want the particular antiderivative W(z) =

<+ %,sint+ 6 >.

If w(t) =< x(),y(t) >, then [w(?) dt = [ < x(£),y(t) > dt =< [x(¢) dt,[y(¢) dt >, or
[x(@) dti+ [y() dtj.

b b b b
For any real numbers a and b, Jw(t) dt = J. <x(t),y(t) > dt =< jx(t) dt, | y(t) dt >, or

a a a a

b b
Ix(t) dri+ Iy(t) dt j. This is known as the definite integral of w(¢) over the interval on the

¢t axis with endpoints ¢ and b. It gives us a particular vector, rather than a vector-valued
function. a and b are known as the limits or boundaries of integration.

b
If W(¢) is any antiderivative of w(¢), then Iw(t) dt = W(b) — W(a). This may be denoted

a
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